Distributed Computational Framework for Large-Scale Stochastic Convex Optimization

Author:

Rostampour VahabORCID,Keviczky Tamás

Abstract

This paper presents a distributed computational framework for stochastic convex optimization problems using the so-called scenario approach. Such a problem arises, for example, in a large-scale network of interconnected linear systems with local and common uncertainties. Due to the large number of required scenarios to approximate the stochasticity of these problems, the stochastic optimization involves formulating a large-scale scenario program, which is in general computationally demanding. We present two novel ideas in this paper to address this issue. We first develop a technique to decompose the large-scale scenario program into distributed scenario programs that exchange a certain number of scenarios with each other to compute local decisions using the alternating direction method of multipliers (ADMM). We show the exactness of the decomposition with a-priori probabilistic guarantees for the desired level of constraint fulfillment for both local and common uncertainty sources. As our second contribution, we develop a so-called soft communication scheme based on a set parametrization technique together with the notion of probabilistically reliable sets to reduce the required communication between the subproblems. We show how to incorporate the probabilistic reliability notion into existing results and provide new guarantees for the desired level of constraint violations. Two different simulation studies of two types of interconnected network, namely dynamically coupled and coupling constraints, are presented to illustrate advantages of the proposed distributed framework.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3