A Method for Establishing a Hygrothermally Controlled Test Room for Measuring the Water Vapor Resistivity Characteristics of Construction Materials

Author:

Olaoye Toba SamuelORCID,Dewsbury MarkORCID,Kunzel Hartwig

Abstract

Hygrothermal assessment is essential to the production of healthy and energy efficient buildings. This has given rise to the demand for the development of a hygrothermal laboratory, as input data to hygrothermal modeling tools can only be sourced and validated through appropriate empirical measurements in a laboratory. These data are then used to quantify a building’s dynamic characteristic moisture transport vis-a-vis a much more comprehensive energy performance analysis through simulation. This paper discusses the methods used to establish Australia’s first hygrothermal laboratory for testing the water vapor resistivity properties of construction materials. The approach included establishing a climatically controlled hygrothermal test room with an automatic integrated system which controls heating, cooling, humidifying, and de-humidifying as required. The data acquisition for this hygrothermal test room operates with the installation of environmental sensors connected to specific and responsive programming codes. The room was successfully controlled to deliver a relative humidity of 50% with ±1%RH deviation and at 23 °C temperature with ±1 °C fluctuation during the testing of the water vapor diffusion properties of a pliable membrane common in Australian residential construction. To validate the potential of this testing facility, an independent measurement was also conducted at the Fraunhofer Institute of Building Physics laboratory (IBP) Holzkirchen, Germany for the diffusion properties of the same pliable membrane. The inter-laboratory testing results were subjected to statistical analysis of variance, this indicates that there is no significant difference between the result obtained in both laboratories. In conclusion, this paper demonstrates that a low-cost hygrothermally controlled test room can successfully replace the more expensive climatic chamber.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3