Multi-Scale Microfluidics for Transport in Shale Fabric

Author:

Ling Bowen,Khan Hasan J.,Druhan Jennifer L.,Battiato IleniaORCID

Abstract

We develop a microfluidic experimental platform to study solute transport in multi-scale fracture networks with a disparity of spatial scales ranging between two and five orders of magnitude. Using the experimental scaling relationship observed in Marcellus shales between fracture aperture and frequency, the microfluidic design of the fracture network spans all length scales from the micron (1 μ) to the dm (10 dm). This intentional `tyranny of scales’ in the design, a determining feature of shale fabric, introduces unique complexities during microchip fabrication, microfluidic flow-through experiments, imaging, data acquisition and interpretation. Here, we establish best practices to achieve a reliable experimental protocol, critical for reproducible studies involving multi-scale physical micromodels spanning from the Darcy- to the pore-scale (dm to μm). With this protocol, two fracture networks are created: a macrofracture network with fracture apertures between 5 and 500 μm and a microfracture network with fracture apertures between 1 and 500 μm. The latter includes the addition of 1 μm ‘microfractures’, at a bearing of 55°, to the backbone of the former. Comparative analysis of the breakthrough curves measured at corresponding locations along primary, secondary and tertiary fractures in both models allows one to assess the scale and the conditions at which microfractures may impact passive transport.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3