Land Cover Classification from Hyperspectral Images via Weighted Spatial-Spectral Kernel Collaborative Representation with Tikhonov Regularization

Author:

Yang RongchaoORCID,Fan Beilei,Wei Ren,Wang Yuting,Zhou Qingbo

Abstract

Precise and timely classification of land cover types plays an important role in land resources planning and management. In this paper, nine kinds of land cover types in the acquired hyperspectral scene are classified based on the kernel collaborative representation method. To reduce the spectral shift caused by adjacency effect when mining the spatial-spectral features, a correlation coefficient-weighted spatial filtering operation is proposed in this paper. Additionally, by introducing this operation into the kernel collaborative representation method with Tikhonov regularization (KCRT) and discriminative KCRT (DKCRT) method, respectively, the weighted spatial-spectral KCRT (WSSKCRT) and weighted spatial-spectral DKCRT (WSSDKCRT) methods are constructed for land cover classification. Furthermore, aiming at the problem of difficulty of pixel labeling in hyperspectral images, this paper attempts to establish an effective land cover classification model in the case of small-size labeled samples. The proposed WSSKCRT and WSSDKCRT methods are compared with four methods, i.e., KCRT, DKCRT, KCRT with composite kernel (KCRT-CK), and joint DKCRT (JDKCRT). The experimental results show that the proposed WSSKCRT method achieves the best classification performance, and WSSKCRT and WSSDKCRT outperform KCRT-CK and JDKCRT, respectively, obtaining the OA over 94% with only 540 labeled training samples, which indicates that the proposed weighted spatial filtering operation can effectively alleviate the spectral shift caused by adjacency effect, and it can effectively classify land cover types under the situation of small-size labeled samples.

Funder

Basic Research Fund of Agricultural Information Institute of CAAS

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3