Soil Organic Carbon Isotope Tracing in Sorghum under Ambient CO2 and Free-Air CO2 Enrichment (FACE)

Author:

Leavitt StevenORCID,Cheng Li,Williams David,Brooks Talbot,Kimball Bruce,Pinter Paul,Wall Gerard,Ottman Michael,Matthias Allan,Paul Eldor,Thompson Thomas,Adam Neal

Abstract

As atmospheric carbon dioxide concentrations, [CO2Air], continue their uncontrolled rise, the capacity of soils to accumulate or retain carbon is uncertain. Free-air CO2 enrichment (FACE) experiments have been conducted to better understand the plant, soil and ecosystem response to elevated [CO2], frequently employing commercial CO2 that imparts a distinct isotopic signal to the system for tracing carbon. We conducted a FACE experiment in 1998 and 1999, whereby sorghum (C4 photosynthetic pathway) was grown in four replicates of four treatments using a split-strip plot design: (i) ambient CO2/ample water (365 μmol mol−1, “Control–Wet”), (ii) ambient CO2/water stress (“Control–Dry”), (iii) CO2-enriched (560 μmol mol−1, “FACE–Wet”), and (iv) CO2-enriched/water stressed (“FACE–Dry”). The stable-carbon isotope composition of the added CO2 (in FACE treatments) was close to that of free atmosphere background values, so the subsequent similar 13C-enriched carbon signal photosynthetically fixed by C4 sorghum plants could be used to trace the fate of carbon in both FACE and control treatments. Measurement of soil organic carbon content (SOC (%) = gC/gdry soil × 100%) and δ13C at three depths (0–15, 15–30, and 30–60 cm) were made on soils from the beginning and end of the two experimental growing seasons. A progressive ca. 0.5‰–1.0‰ δ13C increase in the upper soil SOC in all treatments over the course of the experiment indicated common entry of new sorghum carbon into the SOC pools. The 0–15 cm SOC in FACE treatments was 13C-enriched relative to the Control by ca. 1‰, and according to isotopic mass balance, the fraction of the new sorghum-derived SOC in the Control–Wet treatment at the end of the second season was 8.4%, 14.2% in FACE–Wet, 6.5% in Control–Dry, and 14.2% in FACE–Dry. The net SOC enhancement resulting from CO2 enrichment was therefore 5.8% (or 2.9% y−1 of experiment) under ample water and 7.7% (3.8% y−1 of experiment) under limited water, which matches the pattern of greater aboveground biomass increase with elevated [CO2Air] under the Dry treatment, but no parallel isotopic shifts were found in deeper soils. However, these increased fractions of new carbon in SOC at the end of the experiment do not necessarily mean an increase in total SOC content, because gravimetric measurements of SOC did not reveal a significant increase under elevated [CO2Air], at least within the limits of SOC-content error bars. Thus, new carbon gains might be offset by pre-experiment carbon losses. The results demonstrate successful isotopic tracing of carbon from plants to soils in this sorghum FACE experiment showing differences between FACE and Control treatments, which suggest more dynamic cycling of SOC under elevated [CO2Air] than in the Control treatment.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3