Patterns of Urban Green Space Use Applying Social Media Data: A Systematic Literature Review

Author:

Zabelskyte Gabriele,Kabisch NadjaORCID,Stasiskiene ZanetaORCID

Abstract

Scientific interest in the potential of urban green spaces, particularly urban parks, to improve health and well-being is increasing. Traditional research methods such as observations and surveys have recently been complemented by the use of social media data to understand park visitation patterns. We aimed to provide a systematic overview of how social media data have been applied to identify patterns of urban park use, as well as the advantages and limitations of using social media data in the context of urban park studies. We used the PRISMA method to conduct a systematic literature analysis. Our main findings show that the 22 eligible papers reviewed mainly used social media data to analyse urban park visitors’ needs and demands, and to identify essential park attributes, popular activities, and the spatial, social, and ecological coherence between visitors and parks. The review allowed us to identify the advantages and limitations of using social media data in such research. These advantages include a large database, real-time data, and cost and time savings in data generation of social media data. The identified limitations of using social media data include potentially biased information, a lack of socio-demographic data, and privacy settings on social media platforms. Given the identified advantages and limitations of using social media data in researching urban park visitation patterns, we conclude that the use of social media data as supplementary data constitutes a significant advantage. However, we should critically evaluate the possible risk of bias when using social media data.

Funder

Deutsche Bundesstiftung Umwelt

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3