On-Site Analyses as a Decision Support Tool for Dredging and Sustainable Sediment Management

Author:

Lemière BrunoORCID,Laperche ValérieORCID,Wijdeveld Arjan,Wensveen Marco,Lord RichardORCID,Hamilton Alasdair,Haouche Laurence,Henry MathieuORCID,Harrington Joe,Batel Branislav,Lehette PascalORCID

Abstract

Beneficial use of dredged sediments, either in harbours or waterways, is based on their potential as alternative resources. Such sediments can be considered as bulk materials for industrial needs, which is predicated on their current waste status or meeting end-of-waste constraints. They also can be an integral part of beneficial use projects using sediments as a bulk component, including civil engineering and landscaping. This is particularly important for beneficial use projects focusing on climate change effects mitigation, such as flood protection works, coastline defence or littoral urban areas redevelopment. When dredged sediment is used as a bulk material, its acceptability is based on an assumed homogeneity of its properties. On-site analyses allow pre-dredging detailed mapping at a denser scale than laboratory ones; monitoring dredgings during operations and during processing; and continuous control of their properties at the implementation site. This is currently possible only for a selection of inorganic analytes. When dredgings are part of a larger beneficial use project, on-site analyses facilitate first the baseline survey and the sediment source characterisation. Continuous monitoring of the sediment load allows a fast detection of contamination hot spots and their adequate management. Site survey via on-site instruments allow end users and communities to check themselves the contamination level, hence acceptability is better. On-site dredged sediment analyses monitor both building properties and environmental compliance; soil and sediment analyses at receiving sites; surface and groundwater, either for impact assessment or for monitoring works. On-site instruments provide immediate results and allow dynamic or adaptive sampling strategies, as well as allowing operational decisions in real time. Confirmation by laboratory analyses is required for validation, but on-site sample screening for laboratory analyses improves their efficiency. The present paper was developed on the basis of an earlier presentation, which it developed and updated extensively.

Funder

European Union

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3