Molecular Mechanisms in Understanding Anoxia Tolerance in Rice Seeds under Submergence and Their Implication in Rice Biotechnology

Author:

Adak Malay Kumar1,Das Abir1ORCID,Kundu Ankita1,Chatterjee Mitali2,Hasanuzzaman Mirza3ORCID

Affiliation:

1. Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India

2. Rice Research Station, Directorate of Agriculture, Government of West Bengal, Chinsurah 712102, West Bengal, India

3. Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh

Abstract

Submergence in rice fields creating inundation stress and realizing anoxia or hypoxia is a problem in agriculture. Seeds under this oxygen deficit are faced with fermentative respiration, where the end product would be poisoning the tissue viability. This is more aggravated in direct seeded rice cultivation with the accumulation of lactate as a poison. This review is concerned with the basic insights into anoxia tolerance in seeds and possible strategies to reduce anoxic shock through the modification of metabolism preceded by gene expression. The major concern of anoxic germination is starch metabolism and downstream physiological realization to facilitate escape or quiescence strategy, overcoming submergence stress. The coleoptiles facing hypoxic stress mated with transcripts for oxidative traits, energy metabolism, and proteins for membrane peroxidation in support of energy metabolism are the most important. Hypoxic genes are recovered from traditional indica and japonica land races of rice, and show changes in glycolytic flux and sugar sensing. Anoxic germination and seedling vigor are based on a combinational regulation of oxidative stress and fermentative catabolism. De novo antioxidant and antioxidative enzyme production can support improved seed germination in this condition. Pre-harvest spouting with seed-coat-induced dormancy, hormonal ratios, and hydrolyses would be of concern. Therefore, comprehensive analysis aimed to understand rice seed priming for better gas exchange, diffusion, temperature sensitivity, ion uptake, redox balance, and others. Still, in-depth insights are being awaited for better understanding the physiological and molecular basis using a multi-omics approach for better seed priming to overcome the anoxic/hypoxic revelation mostly acquainted with submergence stress.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3