Cold-Water Corals in Gas Hydrate Drilling Cores from the South China Sea: Occurrences, Geochemical Characteristics and Their Relationship to Methane Seepages

Author:

Deng YinanORCID,Chen Fang,Li Niu,Jin Meng,Cao Jun,Chen Hong,Zhou Yang,Wu Cong,Zhuang Chang,Zhao Yi,Cheng Sihai

Abstract

Cold-water corals (CWCs) are frequently found at cold seep areas. However, the relationship between fluid seepage and CWC development is not clear. Here, for the first time, we report the occurrences, species identification, mineralogy, carbon and oxygen isotopes, as well as elemental compositions of fossil CWC skeletons from gas-hydrate-bearing sediment in drilling cores from the South China Sea (SCS). Three sites (GMGS-08, GMGS-09B, and GMGS-16) were investigated but CWCs were only found at one site (GMGS-09B). Interestingly, the CWCs were found in three horizons and they were all embedded with authigenic carbonates. Three genera of fossil CWCs (Crispatotrochus sp., Solenosmilia sp. and Enallopsammia sp.) were identified. The CWC fragments are predominantly aragonite. The CWCs exhibit δ13C values between −8.4‰ and −0.6‰ that are significantly higher than δ13C values of the associated seep carbonates (δ13C values with an average of −55.6‰, n = 19), which indicates a carbon source other than methane for the CWCs. It appears that authigenic carbonates provide a substratum for coral colonization. Bathymetric high points, appropriate water temperature and stronger bottom-water currents at site GMGS-09B might be crucial to keep conditions favorable for the growth of CWCs in the studied area. In addition, high trace-element concentrations of Cr, Ni, Pb, U, Ba, Th, and Sr suggest that the CWCs are influenced by strong fluid seepage that can reach the water-sediment interface, and associated microbial activity. Hence, it also becomes evident that CWCs in hydrocarbon-rich seepage areas not only provide a critical constraint on the impact of fluid emission on the bottom water chemistry, but also are likely to be very precise recorders of the end time of cold seep activity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3