Sintering Behavior and Technological Properties of Low-Temperature Porcelain Tiles Prepared Using a Lithium Ore and Silica Crucible Waste

Author:

Peng LihuaORCID,Qin Shan

Abstract

Porcelain tiles are a building material that has been widely used in recent years and that consumes substantial resources during the sintering process. This study reports on the production of low-temperature porcelain tiles by using low-grade lithium ore (LO) and silica crucible waste (SCW) in a new SiO2–Al2O3–Na2O–K2O–Li2O system. The firing temperature of the porcelain tiles was reduced from 1260 °C to 1070 °C by adding 30% LO instead of feldspar in a modified triaxial ceramic body, and SCW was recycled and used as a raw material. These actions help to reduce the carbon emissions produced during sintering and achieve sustainable development. The effect of phase transitions on the sintering and technological properties of the porcelain tiles was studied by quantitative phase analysis, using X-ray diffraction (XRD). Secondary mullite (0–19%) can be formed at 1040–1100 °C, where more quartz and cristobalite will be retained, which increases the rupture modulus of the porcelain tiles. While the vitreous phase increases rapidly at 1100–1160 °C, the closed pores (0.1–33.1%) will simultaneously expand, causing a decrease in compactness. The results show that low-grade LO (with a cost similar to that of feldspar) allows for the production of porcelain tiles with better process performance at lower temperatures (≤1100 °C).

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3