Spatial-Temporal Variations of Drought-Flood Abrupt Alternation Events in Southeast China

Author:

Zhang Bowen1,Chen Ying12ORCID,Chen Xingwei12,Gao Lu12ORCID,Liu Meibing12

Affiliation:

1. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China

2. State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China

Abstract

Under climate change, the frequency of drought-flood abrupt alternation (DFAA) events is increasing in Southeast China. However, there is limited research on the evolution characteristics of DFAA in this region. This study evaluated the effectiveness of the drought and flood indexes including SPI (Standardized Precipitation Index), SPEI (Standardized Precipitation Evapotranspiration Index), and SWAP (Standardized Weighted Average Precipitation Index) in identifying DFAA events under varying days of antecedent precipitation. Additionally, the evolution characteristics of DFAA events in Fujian Province from 1961 to 2021 were explored. The results indicate that (1) SPI-12d had the advantages of high effectiveness, optimal generalization accuracy, and strong generalization ability of identification results, and it can be used as the optimal identification index of DFAA events in Southeast China. (2) There was an overall increase in DFAA events at a rate of 1.8 events/10a. The frequency of DFAA events showed a gradual increase from the northwest to the southeast. (3) DTF events were characterized by moderate drought to flood, particularly in February, July, and August, while FTD events were characterized by light/moderate flood to drought, with more events occurring from June to October. (4) DTF event intensity increased in the northern and western regions from 1961 to 2021. For FTD events, the intensity notably increased in the western region from 1961 to 2001, while a significant increase occurred in all regions except the central region from 2001 to 2021. These findings emphasize the need for precautionary measures to address the increasing frequency and severity of DFAA events in Southeast China.

Funder

National Natural Science Foundations of China

Scientific Project from Fujian Provincial Department of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3