Author:
Kunicki ,Angelov ,Ivanov ,Gotszalk ,Rangelow
Abstract
This paper presents a comprehensive modeling and experimental verification of active piezoresistive atomic force microscopy (AFM) cantilevers, which are the technology enabling high-resolution and high-speed surface measurements. The mechanical structure of the cantilevers integrating Wheatstone piezoresistive was modified with the use of focused ion beam (FIB) technology in order to increase the deflection sensitivity with minimal influence on structure stiffness and its resonance frequency. The FIB procedure was conducted based on the finite element modeling (FEM) methods. In order to monitor the increase in deflection sensitivity, the active piezoresistive cantilever was deflected using an actuator integrated within, which ensures reliable and precise assessment of the sensor properties. The proposed procedure led to a 2.5 increase in the deflection sensitivity, which was compared with the results of the calibration routine and analytical calculations.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献