Using Physiological Markers to Assess Comfort during Neuromuscular Electrical Stimulation Induced Muscle Contraction in a Virtually Guided Environment: Pilot Study for a Path toward Combating ICU-Acquired Weakness

Author:

Abou-Hamde Ahmad1,Philippi Lauren1,Jones Eric1,Martin Christian1,Wu Kingsley1,Kundell Michael1,Mathur Sunita2ORCID,Sadeghian Alireza3,Davoudpour Maryam4ORCID,Batt Jane5,Ieraci Adriana3ORCID,Gabison Sharon1ORCID

Affiliation:

1. Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada

2. School of Rehabilitation Therapy, Queen’s University, Kingston, ON K7L 3N6, Canada

3. Department of Computer Science, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

4. Faculty of Applied Sciences and Technology, Humber College, Toronto, ON M9W 5L7, Canada

5. Division of Respirology, Department of Medicine, Unity Health Toronto, Toronto, ON M5B 1W8, Canada

Abstract

We assessed the feasibility of implementing a virtually guided Neuromuscular Electrical Stimulation (NMES) protocol over the tibialis anterior (TA) muscle while collecting heart rate (HR), Numeric Pain Rating Scale (NPRS), and quality of contraction (QoC) data. We investigated if HR, NPRS, and QoC differ ON and OFF the TA motor point and explored potential relationships between heart rate variability (HRV) and the NPRS. Twelve healthy adults participated in this cross-sectional study. Three NMES trials were delivered ON and OFF the TA motor point. HR, QoC, and NPRS data were collected. There was no significant difference in HRV ON and OFF the motor point (p > 0.05). The NPRS was significantly greater OFF the motor point (p < 0.05). The QoC was significantly different between motor point configurations (p < 0.05). There was no correlation between the NPRS and HRV (p > 0.05, r = −0.129). We recommend non-electrical methods of measuring muscle activity for future studies. The NPRS and QoC can be administered virtually. Time-domain HRV measures could increase the validity of the protocol. The variables should be explored further virtually to enhance the protocol before eventual ICU studies.

Funder

New Frontiers in Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3