AMPKα1 Deficiency in Astrocytes from a Rat Model of ALS Is Associated with an Altered Metabolic Resilience

Author:

Belo do Nascimento Inês1,Ates Gamze2,Desmet Nathalie1,Beckers Pauline1ORCID,Massie Ann2,Hermans Emmanuel1ORCID

Affiliation:

1. Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium

2. Center for Neurosciences, Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium

Abstract

Alterations in the activity of the regulator of cell metabolism AMP-activated protein kinase (AMPK) have been reported in motor neurons from patients and animal models of amyotrophic lateral sclerosis (ALS). Considering the key role played by astrocytes in modulating energy metabolism in the nervous system and their compromised support towards neurons in ALS, we examined whether a putative alteration in AMPK expression/activity impacted astrocytic functions such as their metabolic plasticity and glutamate handling capacity. We found a reduced expression of AMPK mRNA in primary cultures of astrocytes derived from transgenic rats carrying an ALS-associated mutated superoxide dismutase (hSOD1G93A). The activation of AMPK after glucose deprivation was reduced in hSOD1G93A astrocytes compared to non-transgenic. This was accompanied by a lower increase in ATP levels and increased vulnerability to this insult, although the ATP production rate did not differ between the two cell types. Furthermore, soliciting the activity of glutamate transporters was found to induce similar AMPK activity in these cells. However, manipulation of AMPK activity did not influence glutamate transport. Together, these results suggest that the altered AMPK responsiveness in ALS might be context dependent and may compromise the metabolic adaptation of astrocytes in response to specific cellular stress.

Funder

Association Belge contre les Maladies neuro-Musculaires

Université catholique de Louvain

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3