Feasibility Analysis and Application of Reinforcement Learning Algorithm Based on Dynamic Parameter Adjustment

Author:

Li MenglinORCID,Gu Xueqiang,Zeng Chengyi,Feng Yuan

Abstract

Reinforcement learning, as a branch of machine learning, has been gradually applied in the control field. However, in the practical application of the algorithm, the hyperparametric approach to network settings for deep reinforcement learning still follows the empirical attempts of traditional machine learning (supervised learning and unsupervised learning). This method ignores part of the information generated by agents exploring the environment contained in the updating of the reinforcement learning value function, which will affect the performance of the convergence and cumulative return of reinforcement learning. The reinforcement learning algorithm based on dynamic parameter adjustment is a new method for setting learning rate parameters of deep reinforcement learning. Based on the traditional method of setting parameters for reinforcement learning, this method analyzes the advantages of different learning rates at different stages of reinforcement learning and dynamically adjusts the learning rates in combination with the temporal-difference (TD) error values to achieve the advantages of different learning rates in different stages to improve the rationality of the algorithm in practical application. At the same time, by combining the Robbins–Monro approximation algorithm and deep reinforcement learning algorithm, it is proved that the algorithm of dynamic regulation learning rate can theoretically meet the convergence requirements of the intelligent control algorithm. In the experiment, the effect of this method is analyzed through the continuous control scenario in the standard experimental environment of ”Car-on-The-Hill” of reinforcement learning, and it is verified that the new method can achieve better results than the traditional reinforcement learning in practical application. According to the model characteristics of the deep reinforcement learning, a more suitable setting method for the learning rate of the deep reinforcement learning network proposed. At the same time, the feasibility of the method has been proved both in theory and in the application. Therefore, the method of setting the learning rate parameter is worthy of further development and research.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference37 articles.

1. Human-level control through deep reinforcement learning

2. A review of reinforcement learning research;Chen;Appl. Res. Comput.,2010

3. Prefrontal cortex as a meta-reinforcement learning system

4. Deep learning

5. Playing Atari with Deep Reinforcement Learning;Mnih;arXiv,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3