Multi-Scale Coal Fire Detection Based on an Improved Active Contour Model from Landsat-8 Satellite and UAV Images

Author:

Gao Yanyan,Hao Ming,Wang Yunjia,Dang Libo,Guo Yuecheng

Abstract

Underground coal fires can increase surface temperature, cause surface cracks and collapse, and release poisonous and harmful gases, which significantly harm the ecological environment and humans. Traditional methods of extracting coal fires, such as global threshold, K-mean and active contour model, usually produce many false alarms. Therefore, this paper proposes an improved active contour model by introducing the distinguishing energies of coal fires and others into the traditional active contour model. Taking Urumqi, Xinjiang, China as the research area, coal fires are detected from Landsat-8 satellite and unmanned aerial vehicle (UAV) data. The results show that the proposed method can eliminate many false alarms compared with some traditional methods, and achieve detection of small-area coal fires by referring field survey data. More importantly, the results obtained from UAV data can help identify not only burning coal fires but also potential underground coal fires. This paper provides an efficient method for high-precision coal fire detection and strong technical support for reducing environmental pollution and coal energy use.

Funder

Fundamental Research Funds for the Central Universities under Grant

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3