Automatic Positional Accuracy Assessment of Imagery Segmentation Processes: A Case Study

Author:

Ruiz-Lendínez Juan J.,Ureña-Cámara Manuel A.ORCID,Mesa-Mingorance José L.ORCID,Quesada-Real Francisco J.

Abstract

There are many studies related to Imagery Segmentation (IS) in the field of Geographic Information (GI). However, none of them address the assessment of IS results from a positional perspective. In a field in which the positional aspect is critical, it seems reasonable to think that the quality associated with this aspect must be controlled. This paper presents an automatic positional accuracy assessment (PAA) method for assessing this quality component of the regions obtained by means of the application of a textural segmentation algorithm to a Very High Resolution (VHR) aerial image. This method is based on the comparison between the ideal segmentation and the computed segmentation by counting their differences. Therefore, it has the same conceptual principles as the automatic procedures used in the evaluation of the GI’s positional accuracy. As in any PAA method, there are two key aspects related to the sample that were addressed: (i) its size—specifically, its influence on the uncertainty of the estimated accuracy values—and (ii) its categorization. Although the results obtained must be taken with caution, they made it clear that automatic PAA procedures, which are mainly applied to carry out the positional quality assessment of cartography, are valid for assessing the positional accuracy reached using other types of processes. Such is the case of the IS process presented in this study.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference49 articles.

1. Pyramid segmentation algorithms revisited

2. Role of Image Segmentation in Digital Image Processing for Information Processing;Manjula;Int. J. Comput. Sci. Trends Technol.,2015

3. Generic model abstraction from examples;Keselman;IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,2001

4. A Novel Approach to Image Segmentation;Singh;Int. J. Adv. Res. Comput. Sci. Soft. Eng.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3