Modelling Place Visit Probability Sequences during Trajectory Data Gaps Based on Movement History

Author:

Ren ChangORCID,Tang LuliangORCID,Long Jed,Kan Zihan,Yang Xue

Abstract

The acquisition of human trajectories facilitates movement data analytics and location-based services, but gaps in trajectories limit the extent in which many tracking datasets can be utilized. We present a model to estimate place visit probabilities at time points within a gap, based on empirical mobility patterns derived from past trajectories. Different from previous models, our model makes use of prior information from historical data to build a chain of empirically biased random walks. Therefore, it is applicable to gaps of varied lengths and can be fitted to empirical data conveniently. In this model, long gaps are broken into a chain of multiple episodes according to past patterns, while short episodes are estimated with anisotropic location transition probabilities. Experiments show that our model is able to hit almost 60% of the ground truth for short gaps of several minutes and over 40% for longer gaps up to weeks. In comparison, existing models are only able to hit less than 10% and 1% for short and long gaps, respectively. Visit probability distributions estimated by the model are useful for generating paths in data gaps, and have potential for disaggregated movement data analysis in uncertain environments.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3