Gait Recognition Method of Underground Coal Mine Personnel Based on Densely Connected Convolution Network and Stacked Convolutional Autoencoder

Author:

Liu Xiaoyang,Liu JinqiangORCID

Abstract

Biological recognition methods often use biological characteristics such as the human face, iris, fingerprint, and palm print; however, such images often become blurred under the limitation of the complex environment of the underground, which leads to low identification rates of underground coal mine personnel. A gait recognition method via similarity learning named Two-Stream neural network (TS-Net) is proposed based on a densely connected convolution network (DenseNet) and stacked convolutional autoencoder (SCAE). The mainstream network based on DenseNet is mainly used to learn the similarity of dynamic deep features containing spatiotemporal information in the gait pattern. The auxiliary stream network based on SCAE is used to learn the similarity of static invariant features containing physiological information. Moreover, a novel feature fusion method is adopted to achieve the fusion and representation of dynamic and static features. The extracted features are robust to angle, clothing, miner hats, waterproof shoes, and carrying conditions. The method was evaluated on the challenging CASIA-B gait dataset and the collected gait dataset of underground coal mine personnel (UCMP-GAIT). Experimental results show that the method is effective and feasible for the gait recognition of underground coal mine personnel. Besides, compared with other gait recognition methods, the recognition accuracy has been significantly improved.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference36 articles.

1. State-of-the-Art on Gait Recognition;Chai;Comput. Sci.,2012

2. Personnel identification in mine underground based on maximin discriminant projection;Zhang;J. China Coal Soc.,2013

3. View-invariant gait recognition based on kinect skeleton feature

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3