Model-Based Identification of Larix sibirica Ledeb. Damage Caused by Erannis jacobsoni Djak. Based on UAV Multispectral Features and Machine Learning

Author:

Ma Lei,Huang Xiaojun,Hai Quansheng,Gang Bao,Tong Siqin,Bao Yuhai,Dashzebeg Ganbat,Nanzad Tsagaantsooj,Dorjsuren Altanchimeg,Enkhnasan DavaadorjORCID,Ariunaa Mungunkhuyag

Abstract

While unmanned aerial vehicle (UAV) remote sensing technology has been successfully used in crop vegetation pest monitoring, a new approach to forest pest monitoring that can be replicated still needs to be explored. The aim of this study was to develop a model for identifying the degree of damage to forest trees caused by Erannis jacobsoni Djak. (EJD). By calculating UAV multispectral vegetation indices (VIs) and texture features (TF), the features sensitive to the degree of tree damage were extracted using the successive projections algorithm (SPA) and analysis of variance (ANOVA), and a one-dimensional convolutional neural network (1D-CNN), random forest (RF), and support vector machine (SVM) were used to construct damage degree recognition models. The overall accuracy (OA), Kappa, Macro-Recall (Rmacro), and Macro-F1 score (F1macro) of all models exceeded 0.8, and the best results were obtained for the 1D-CNN based on the vegetation index sensitive feature set (OA: 0.8950, Kappa: 0.8666, Rmacro: 0.8859, F1macro: 0.8839), while the SVM results based on both vegetation indices and texture features exhibited the poorest performance (OA: 0.8450, Kappa: 0.8082, Rmacro: 0.8415, F1macro: 0.8335). The results for the stand damage level identified by the models were generally consistent with the field survey results, but the results of SVMVIs+TF were poor. Overall, the 1D-CNN showed the best recognition performance, followed by the RF and SVM. Therefore, the results of this study can serve as an important and practical reference for the accurate and efficient identification of the damage level of forest trees attacked by EJD and for the scientific management of forest pests.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3