Improved Intrusion Detection Based on Hybrid Deep Learning Models and Federated Learning

Author:

Huang Jia12,Chen Zhen12,Liu Sheng-Zheng12,Zhang Hao23,Long Hai-Xia12ORCID

Affiliation:

1. College of Information Science Technology, Hainan Normal University, Haikou 571158, China

2. Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou 571158, China

3. College of Tourism, Hainan Normal University, Haikou 571158, China

Abstract

The security of the Industrial Internet of Things (IIoT) is of vital importance, and the Network Intrusion Detection System (NIDS) plays an indispensable role in this. Although there is an increasing number of studies on the use of deep learning technology to achieve network intrusion detection, the limited local data of the device may lead to poor model performance because deep learning requires large-scale datasets for training. Some solutions propose to centralize the local datasets of devices for deep learning training, but this may involve user privacy issues. To address these challenges, this study proposes a novel federated learning (FL)-based approach aimed at improving the accuracy of network intrusion detection while ensuring data privacy protection. This research combines convolutional neural networks with attention mechanisms to develop a new deep learning intrusion detection model specifically designed for the IIoT. Additionally, variational autoencoders are incorporated to enhance data privacy protection. Furthermore, an FL framework enables multiple IIoT clients to jointly train a shared intrusion detection model without sharing their raw data. This strategy significantly improves the model’s detection capability while effectively addressing data privacy and security issues. To validate the effectiveness of the proposed method, a series of experiments were conducted on a real-world Internet of Things (IoT) network intrusion dataset. The experimental results demonstrate that our model and FL approach significantly improve key performance metrics such as detection accuracy, precision, and false-positive rate (FPR) compared to traditional local training methods and existing models.

Funder

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Haikou Science and Technology Plan Project of China

Hainan Province Graduate Innovation Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3