Abstract
Waste to energy technology is attracting attention to overcome the upcoming environmental and energy issues. One of the key-steps is the water-gas shift (WGS) reaction, which can convert the waste-derived synthesis gas (H2 and CO) to pure hydrogen. Co–CeO2 catalysts were synthesized by the different methods to derive the optimal synthetic method and to investigate the effect of the preparation method on the physicochemical characteristics of Co–CeO2 catalysts in the high-temperature water-gas shift (HTS) reaction. The Co–CeO2 catalyst synthesized by the sol-gel method featured a strong metal to support interaction and the largest number of oxygen vacancies compared to other catalysts, which affects the catalytic activity. As a result, the Co–CeO2 catalyst synthesized by the sol-gel method exhibited the highest WGS activity among the prepared catalysts, even in severe conditions (high CO concentration: ~38% in dry basis and high gas hourly space velocity: 143,000 h−1).
Funder
National Research Foundation of Korea
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献