Interaction of SO2 with the Platinum (001), (011), and (111) Surfaces: A DFT Study

Author:

Ungerer Marietjie J.ORCID,Santos-Carballal DavidORCID,Cadi-Essadek Abdelaziz,van Sittert Cornelia G. C. E.ORCID,de Leeuw Nora H.ORCID

Abstract

Given the importance of SO2 as a pollutant species in the environment and its role in the hybrid sulphur (HyS) cycle for hydrogen production, we carried out a density functional theory study of its interaction with the Pt (001), (011), and (111) surfaces. First, we investigated the adsorption of a single SO2 molecule on the three Pt surfaces. On both the (001) and (111) surfaces, the SO2 had a S,O-bonded geometry, while on the (011) surface, it had a co-pyramidal and bridge geometry. The largest adsorption energy was obtained on the (001) surface (Eads = −2.47 eV), followed by the (011) surface (Eads = −2.39 and −2.28 eV for co-pyramidal and bridge geometries, respectively) and the (111) surface (Eads = −1.85 eV). When the surface coverage was increased up to a monolayer, we noted an increase of Eads/SO2 for all the surfaces, but the (001) surface remained the most favourable overall for SO2 adsorption. On the (111) surface, we found that when the surface coverage was θ > 0.78, two neighbouring SO2 molecules reacted to form SO and SO3. Considering the experimental conditions, we observed that the highest coverage in terms of the number of SO2 molecules per metal surface area was (111) > (001) > (011). As expected, when the temperature increased, the surface coverage decreased on all the surfaces, and gradual desorption of SO2 would occur above 500 K. Total desorption occurred at temperatures higher than 700 K for the (011) and (111) surfaces. It was seen that at 0 and 800 K, only the (001) and (111) surfaces were expressed in the morphology, but at 298 and 400 K, the (011) surface was present as well. Taking into account these data and those from a previous paper on water adsorption on Pt, it was evident that at temperatures between 400 and 450 K, where the HyS cycle operates, most of the water would desorb from the surface, thereby increasing the SO2 concentration, which in turn may lead to sulphur poisoning of the catalyst.

Funder

Economic and Social Research Council

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3