Electrocatalytic Degradation of Azo Dye by Vanadium-Doped TiO2 Nanocatalyst

Author:

Chang Jih-Hsing,Wang Yong-Li,Dong Cheng-Di,Shen Shan-Yi

Abstract

In this work, nano V/TiO2 catalysts at different molar ratios were prepared and fabricated as the electrocatalytic electrodes for electrocatalytic degradation. The effect of the vanadium doping on the surface morphology, microstructural, and specific surface area of V/TiO2 catalysts was probed by field emission scanning electron microscope (FESEM) x-ray diffractometer (XRD), and Brunauer–Emmett–Teller (BET), respectively. Afterward, the solution of Acid Red 27 (AR 27, one kind of azo dye) was treated by an electrocatalytic system in which the nano V/TiO2 electrode was employed as the anode and graphite as the cathode. Results demonstrate that AR 27 can be effectively degraded by the nano V/TiO2 electrodes; the highest removal efficiency of color and total organic carbon (TOC) reached 99% and 76%, respectively, under 0.10 VT (molar ratio of vanadium to titanium) condition. The nano V/TiO2 electrode with high specific surface area facilitated the electrocatalytic degradation. The current density of 25 mA cm−2 was found to be the optimum operation for this electrocatalytic system whereas the oxygen was increased with the current density. The electricity consumption of pure TiO2 and nano V/TiO2 electrode in this electrocatalytic system was around 0.11 kWh L−1 and 0.02 kWh L−1, respectively. This implies that the nano V/TiO2 electrode possesses both high degradation and energy saving features. Moreover, the nono V/TiO2 electrode shows its possible repeated utilization.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3