Design and Construction of an Effective Expression System with Aldehyde Tag for Site-Specific Enzyme Immobilization

Author:

Wang Fang,Li Rong,Jian Hui,Huang Zihao,Wang Yingwu,Guo Zheng,Gao RenjunORCID

Abstract

In recent years, the development and application of site-specific immobilization technology for proteins have undergone significant advances, which avoids the unwanted and random covalent linkage between the support and active site of protein in the covalent immobilization. Formylglycine generating enzyme (FGE) can transform the cysteine from a conversed 6-amino-acid sequence CXPXR into formylglycine with an aldehyde group (also termed as “aldehyde tag”). Based on the frame of pET-28a, the His-tags were replaced with aldehyde tags. Afterward, a set of plasmids were constructed for site-specific covalent immobilization, their His-tags were knock out (DH), or were replaced at different positions: N-terminal (NQ), C-terminal (CQ), or both (DQ) respectively. Three different enzymes, thermophilic acyl aminopeptidase (EC 3.4.19.1) from Sulfolobus tokodaii (ST0779), thermophilic dehalogenase (EC 3.8.1.2) from Sulfolobus tokodaii (ST2570), and Lipase A (EC 3.1.1.3) from Bacillus subtilis (BsLA) were chosen as model enzymes to connect with these plasmid systems. The results showed that different aldehyde-tagged enzymes can be successfully covalently attached to different carriers modified with an amino group, proving the universality of the method. The new immobilized enzyme also presented better thermostability and reutilization than those of the free enzyme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3