Abstract
Novel bimetallic Pd-Mn/Al2O3 catalysts are designed by the decomposition of cyclopentadienylmanganese tricarbonyl (cymantrene) on reduced Pd/Al2O3 in an H2 atmosphere. The peculiarities of cymantrene decomposition on palladium and, thus, the formation of bimetallic Pd-Mn catalysts are studied. The catalysts are characterized by N2 adsorption, H2 pulse chemisorption, temperature-programmed desorption of hydrogen (TPD-H2), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The modified catalysts show the changed hydrogen chemisorption properties and the absence of weakly bonded hydrogen. Using an organomanganese precursor provides an uniform Mn distribution on the catalyst surface. Tested in hydrogenation of acetylene, the catalysts show both higher activity and selectivity to ethylene (20% higher) compared to the non-modified Pd/Al2O3 catalyst. The influence of the addition of Mn and temperature treatment on catalyst performance is studied. The optimal Mn content and treatment temperature are found. It is established that modification with Mn changes the route of acetylene hydrogenation from a consecutive scheme for Pd/Al2O3 to parallel one for the Pd-Mn samples. The reaction rate shows zero overall order by reagents for all tested catalysts.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献