Abstract
The synthesis of energetic metal–organic frameworks (EMOFs) with one-dimensional, two-dimensional and three-dimensional structures is an effective strategy for developing new-generation high-energy-density and insensitive materials. The basic properties, models, synthetic strategies and applications of EMOF materials with nitrogen-rich energetic groups as ligands are reviewed. In contrast with traditional energetic materials, EMOFs exhibit some interesting characteristics, like tunable structure, diverse pores, high-density, high-detonation heat and so on. The traditional strategies to design EMOF materials with ideal properties are just to change the types and the size of energetic ligands and to select different metal ions. Recently, some new design concepts have come forth to produce more EMOFs materials with excellent properties, by modifying the energetic groups on the ligands and introducing highly energetic anion into skeleton, encapsulating metastable anions, introducing templates and so on. The paper points out that appropriate constructing strategy should be adopted according to the inherent characteristics of different EMOFs, by combining with functional requirements and considering the difficulties and the cost of production. To promote the development and application of EMOF materials, the more accurate and comprehensive synthesis, systematic performance measurement methods, theoretical calculation and structure simulation should be reinforced.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献