Alkali Earth Metal Molybdates as Catalysts for the Selective Oxidation of Methanol to Formaldehyde—Selectivity, Activity, and Stability

Author:

Thrane JoachimORCID,Lundegaard Lars Fahl,Beato Pablo,Mentzel Uffe Vie,Thorhauge Max,Jensen Anker DegnORCID,Høj MartinORCID

Abstract

Alkali earth metal molybdates (MMoO4, M = Mg, Ca, Sr, and Ba) were investigated as catalysts for the selective oxidation of methanol to formaldehyde in the search for more stable alternatives to the current industrial iron molybdate catalyst. The catalysts were prepared by either sol-gel synthesis or co-precipitation with both stoichiometric ratio (Mo:M = 1.0) and 10 mol% to 20 mol% excess Mo (Mo:M = 1.1 to 1.2). The catalysts were characterized by X-ray diffraction (XRD), nitrogen physisorption, Raman spectroscopy, temperature programmed desorption of CO2 (CO2-TPD), and inductively coupled plasma (ICP). The catalytic performance of the catalysts was measured in a lab-scale, packed bed reactor setup by continuous operation for up to 100 h on stream at 400 °C. Initial selectivities towards formaldehyde of above 97% were achieved for all samples with excess molybdenum oxide at MeOH conversions between 5% and 75%. Dimethyl ether (DME) and dimethoxymethane (DMM) were the main byproducts, but CO (0.1%–2.1%) and CO2 (0.1%–0.4%) were also detected. It was found that excess molybdenum oxide evaporated from all the catalysts under operating conditions within 10 to 100 h on stream. No molybdenum evaporation past the point of stoichiometry was detected.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference63 articles.

1. IHS Markit Formaldehydehttps://www.ihs.com/products/formaldehyde-chemical-economics-handbook.html

2. Informally Speaking A Formaldehyde Magazine from Johnson Mathey;Andersson,2017

3. Process Improvements in Methanol Oxidation to Formaldehyde: Application and Catalyst Development

4. Cision Global Formaldehyde Market 2018–2022https://www.prnewswire.com/news-releases/global-formaldehyde-market-2018-2022-300633054.html

5. Formaldehyde;Franz,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3