Shaking Rate during Production Affects the Activity of Escherichia coli Surface-Displayed Candida antarctica Lipase A

Author:

Chung Chen-Fu,Lin Shih-Che,Juang Tzong-YuanORCID,Liu Yung-Chuan

Abstract

In this study, a surface-display system was applied for the expression of lipase A in an E. coli expression system. Since the target protein was exposed on the cell membrane, the shaking rate during culturing might have increased the oxygen mass transfer rate and the shear stress, both of which would be detrimental to the surface-displayed protein. The shaking rate did indeed have an effect on the properties of the surface-displayed lipase A from Candida antarctica (sdCALA). When cultivated at a shaking rate of less than 50 rpm, the specific activity of sdCALA was low, which was due to the limited amount of dissolved oxygen. When the shaking rate was greater than 100 rpm, the specific activity decreased as a result of shear stress. When cultivating CALA and sdCALA at various temperatures and values of pH, both proteins displayed the same activity profile, with the optimum conditions being 60 °C and pH 6. A kinetic study revealed that the sdCALA cultivated at 100 rpm gave a higher value of νm (0.074 μmol/mL/min) and a lower value of Km (0.360 μmol/mL) relative to those obtained at 200 rpm and relative to those of the free CALA. sdCALA retained over 80% of its activity after treatment at 70 °C for 30 min, but its activity decreased rapidly when the temperature was above 80 °C. The specific activity of sdCALA decreased in the presence of acetonitrile and acetone relative to that of the control (50% ethanol), regardless of the solvent concentration. The highest activity (0.67 U/mL) was obtained when the ethanol concentration was 30%.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3