Strategy for Modifying Layered Perovskites toward Efficient Solar Light-Driven Photocatalysts for Removal of Chlorinated Pollutants

Author:

Raciulete Monica,Papa Florica,Negrila Catalin,Bratan Veronica,Munteanu CornelORCID,Pandele-Cusu Jeanina,Culita Daniela C.ORCID,Atkinson Irina,Balint Ioan

Abstract

We have explored an efficient strategy to enhance the overall photocatalytic performances of layered perovskites by increasing the density of hydroxyl group by protonation. The experimental procedure consisted of the slow replacement of interlayer Rb+ cation of RbLaTa2O7 Dion-Jacobson (DJ) perovskite by H+ via acid treatment. Two layered perovskites synthesized by mild (1200 °C for 18 h) and harsh (950 and 1200 °C, for 36 h) annealing treatment routes were used as starting materials. The successful intercalation of proton into D-J interlayer galleries was confirmed by FTIR spectroscopy, thermal analyses, ion chromatography and XPS results. In addition, the ion-exchange route was effective to enlarge the specific surface area, thus enhancing the supply of photocharges able to participate in redox processes involved in the degradation of organic pollutants. HLaTa_01 protonated layered perovskite is reported as a efficient photocatalyst for photomineralization of trichloroethylene (TCE) to Cl− and CO2 under simulated solar light. The enhanced activity is attributed to combined beneficial roles played by the increased specific surface area and high density of hydroxyl groups, leading to an efficiency of TCE mineralization of 68% moles after 5 h of irradiation.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3