Copper–Zirconia Catalysts: Powerful Multifunctional Catalytic Tools to Approach Sustainable Processes

Author:

Scotti NicolaORCID,Bossola FilippoORCID,Zaccheria Federica,Ravasio NicolettaORCID

Abstract

Copper–zirconia catalysts find many applications in different reactions owing to their unique surface properties and relatively easy manufacture. The so-called methanol economy, which includes the CO2 and CO valorization and the hydrogen production, and the emerging (bio)alcohol upgrading via dehydrogenative coupling reaction, are two critical fields for a truly sustainable development in which copper–zirconia has a relevant role. In this review, we provide a systematic view on the factors most impacting the catalytic activity and try to clarify some of the discrepancies that can be found in the literature. We will show that contrarily to the large number of studies focusing on the zirconia crystallographic phase, in the last years, it has turned out that the degree of surface hydroxylation and the copper–zirconia interphase are in fact the two mostly determining factors to be controlled to achieve high catalytic performances.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3