Co-Immobilization and Co-Localization of Oxidases and Catalases: Catalase from Bordetella Pertussis Fused with the Zbasic Domain

Author:

García-García Paz,Rocha-Martin JavierORCID,Guisan Jose M.ORCID,Fernandez-Lorente GloriaORCID

Abstract

Oxidases catalyze selective oxidations by using molecular oxygen as an oxidizing agent. This process promotes the release of hydrogen peroxide, an undesirable byproduct. The instantaneous elimination of hydrogen peroxide can be achieved by co-immobilization and co-localization of the oxidase and an auxiliary catalase inside the porous structure of solid support. In this paper, we proposed that catalase from Bordetella pertussis fused with a small domain (Zbasic) as an excellent auxiliary enzyme. The enzyme had a specific activity of 23 U/mg, and this was almost six-fold higher than the one of the commercially available catalases from bovine liver. The Zbasic domain was fused to the four amino termini of this tetrameric enzyme. Two domains were close in one hemisphere of the enzyme molecule, and the other two were close in the opposite hemisphere. In this way, each hemisphere contained 24 residues with a positive charge that was very useful for the purification of the enzyme via cationic exchange chromatography. In addition to this, each hemisphere contained 10 Lys residues that were very useful for a rapid and intense multipoint covalent attachment on highly activated glyoxyl supports. In fact, 190 mg of the enzyme was immobilized on one gram of glyoxyl-10% agarose gel. The ratio catalase/oxidase able to instantaneously remove more than 93% of the released hydrogen peroxide was around 5–6 mg of catalase per mg of oxidase. Thirty milligrams of amine oxidase and 160 mg of catalase were co-immobilized and co-localized per gram of glyoxyl-agarose 10BCL (10% beads cross-linked) support. This biocatalyst eliminated biogenic amines (putrescine) 80-fold faster than a biocatalyst of the same oxidase co-localized with the commercial catalase from bovine liver.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3