A Trimetallic Pt2NiCo/C Electrocatalyst with Enhanced Activity and Durability for Oxygen Reduction Reaction

Author:

Alfaro-López Hilda M.,Valdés-Madrigal Manuel A.,Rojas-Chávez HugoORCID,Cruz-Martínez Heriberto,Padilla-Islas Miguel A.,Tellez-Cruz Miriam M.ORCID,Solorza-Feria OmarORCID

Abstract

Commercialization of the polymer electrolyte membrane fuel cell (PEMFC) requires that electrocatalysts for oxygen reduction reaction (ORR) satisfy two main considerations: materials must be highly active and show long-term stability in acid medium. Here, we describe the synthesis, physical characterization, and electrochemical evaluation of carbon-dispersed Pt2NiCo nanocatalysts for ORR in acid medium. We synthesized a trimetallic electrocatalyst via chemical route in organic medium and investigated the physical properties of the Pt2NiCo/C nanocatalyst by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy-scanning electron microscope (EDXS-SEM), and scanning transmission electron microscopy (STEM), whereas the catalytic activities of the Pt2NiCo/C and Pt/C nanocatalysts were determined through cyclic voltammetry (CV), CO-stripping, and rotating disk electrode (RDE) electrochemical techniques. XRD and EDXS-SEM results confirmed the presence of the three metals in the nanoparticles, and scanning transmission electron microscopy (STEM) allowed observation of the Pt2NiCo nanoparticles at ~10 nm. The measured specific activity for the synthesized nanocatalyst is ~6.4-fold higher than that of Pt/C alone, and its mass activity is ~2.2-fold higher than that of Pt/C, which is attributed to the synergistic interaction of the trimetallic electrocatalyst. Furthermore, the specific and mass activities of the synthesized material are maintained after the accelerated stability test, whereas the catalytic properties of Pt/C decreased. These results suggest that the Pt2NiCo/C trimetallic nanocatalyst is a promising candidate cathode electrode for use in PEMFCs.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3