Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane

Author:

Amin Mohamad HassanORCID

Abstract

The question remains over the role of the pore structure of the support material on the catalytic behaviour of Ni catalysts during the CO2/dry reforming of methane (DRM). For this reason, a series of mesoporous materials with different pore structures, namely MCM-41, KIT-6, tri-modal porous silica (TMS), SBA-15 and mesostructured cellular foams (MCFs) were synthesised via hydrothermal synthesis methods and further impregnated with 15 wt.% NiO (11.8 wt.% Ni). It was observed that synthesised TMS is a promising catalyst support for DRM as Ni/TMS gave the highest activity and stability among these materials as well as the Ni catalysts supported on classic ordered mesoporous silicates support reported in the literature at the relatively low temperature (700 °C). On the other hand, Ni supported on CMC-41 exhibited the lowest activity among them. To understand the reason for this difference, the physicochemical properties of these materials were characterised in detail. The results show that the thickness of the silica wall and the pore size of the support material play a critical role in the catalytic activity of Ni catalysts in the CO2 reforming of methane.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3