Abstract
The question remains over the role of the pore structure of the support material on the catalytic behaviour of Ni catalysts during the CO2/dry reforming of methane (DRM). For this reason, a series of mesoporous materials with different pore structures, namely MCM-41, KIT-6, tri-modal porous silica (TMS), SBA-15 and mesostructured cellular foams (MCFs) were synthesised via hydrothermal synthesis methods and further impregnated with 15 wt.% NiO (11.8 wt.% Ni). It was observed that synthesised TMS is a promising catalyst support for DRM as Ni/TMS gave the highest activity and stability among these materials as well as the Ni catalysts supported on classic ordered mesoporous silicates support reported in the literature at the relatively low temperature (700 °C). On the other hand, Ni supported on CMC-41 exhibited the lowest activity among them. To understand the reason for this difference, the physicochemical properties of these materials were characterised in detail. The results show that the thickness of the silica wall and the pore size of the support material play a critical role in the catalytic activity of Ni catalysts in the CO2 reforming of methane.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献