Abstract
Carbon-based solid acid catalysts were prepared using rice straw (RS) waste, and the effects of carbonization temperature and sulfonation temperature on the catalytic activity were investigated. The properties of the catalysts were characterized using thermo gravimetric (TG), scanning electron microscope (SEM), Brunauer–Emmet–Teller (BET), Fourier transform infrared spectroscopy (FT-IR), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS), and their activities were investigated through the hydration of α-pinene. The conversion of α-pinene and the selectivity of α-terpineol reached 67.60% and 57.07% at 80 °C and atmospheric pressure in 24 h, respectively. The high catalytic capacity of the catalyst is attributed to the high acid site density and high porosity of the catalyst. TPD analysis and FT-IR spectroscopy showed that the catalyst produced by low-temperature carbonization at 300 °C followed by low-temperature sulfonation at 80 °C had abundant strong acid sites (0.82 mmol/g), which can effectively inhibit the side reactions of hydrated α-pinene. The total acidity reached 2.87 mmol/g. N2-physisorption analysis clearly indicated that the obtained catalysts were mesopore-predominant materials, and the SBET and VTotal of catalysts reached 420.9 m2/g and 4.048 cm3/g, respectively. Preparation of the catalyst involves low energy consumption, and its cheap raw materials make the whole process simple, economical, and environmentally friendly.
Funder
Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献