Visible Light Responsive Strontium Carbonate Catalyst Derived from Solvothermal Synthesis

Author:

Wichannananon Pornnaphat,Kobkeatthawin Thawanrat,Smith Siwaporn MeejooORCID

Abstract

A single crystalline phase of strontium carbonate (SrCO3) was successfully obtained from solvothermal treatments of hydrated strontium hydroxide in ethanol (EtOH) at 100 °C for 2 h, using specific Sr:EtOH mole ratios of 1:18 or 1:23. Other solvothermal treatment times (0.5, 1.0 and 3 h), temperatures (80 and 150 °C) and different Sr:EtOH mole ratios (1:13 and 1:27) led to formation of mixed phases of Sr-containing products, SrCO3 and Sr(OH)2 xH2O. The obtained products (denoted as 1:18 SrCO3 and 1:23 SrCO3), containing a single phase of SrCO3, were further characterized in comparison with commercial SrCO3, and each SrCO3 material was employed as a photocatalyst for the degradation of methylene blue (MB) in water under visible light irradiation. Only the 1:23 SrCO3 sample is visible light responsive (Eg = 2.62 eV), possibly due to the presence of ethanol in the structure, as detected by thermogravimetric analysis. On the other hand, the band gap of 1:18 SrCO3 and commercial SrCO3 are 4.63 and 3.25 eV, respectively, and both samples are UV responsive. The highest decolourisation efficiency of MB solutions was achieved using the 1:23 SrCO3 catalyst, likely due to its narrow bandgap. The variation in colour removal results in the dark and under visible light irradiation, with radical scavenging tests, suggests that the high decolourisation efficiency was mainly due to a generated hydroxyl-radical-related reaction pathway. Possible degradation products from MB oxidation under visible light illumination in the presence of SrCO3 are aromatic sulfonic acids, dimethylamine and phenol, as implied by MS direct injection measurements. Key findings from this work could give more insight into alternative synthesis routes to tailor the bandgap of SrCO3 materials and possible further development of cocatalysts and composites for environmental applications.

Funder

Thailand Research Fund

National Research Council of Thailand

Center of Excellence for Innovation in Chemistry

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3