Trimesoyl Chloride-Melamine Copolymer-TiO2 Nanocomposites as High-Performance Visible-Light Photocatalysts for Volatile Organic Compound Degradation

Author:

Zhang Luqian,Wang Chen,Sun JingORCID,An Zhengkai

Abstract

Benzene is a typical volatile organic compound (VOC) and is found widely in industrial waste gases. In this study, trimesoyl chloride-melamine copolymer (TMP)-TiO2 nanocomposites with excellent photocatalytic efficiency in visible-light degradation of gas-phase benzene were synthesized via an in situ hydrothermal synthesis. The optimal conditions for TMP-TiO2 nanocomposite synthesis were determined by orthogonal experiments. The structural, physiochemical, and optoelectronic properties of the samples were studied by various analytical techniques. Ultraviolet-visible diffuse reflectance spectroscopy and surface photovoltage spectra showed that the positions of the light-absorbance edges of the TMP-TiO2 nanocomposites were sharply red-shifted to the visible region relative to those of unmodified TiO2. The most efficient TMP-TiO2 nanocomposite was used for photocatalytic oxidative degradation of gas-phase benzene (initial concentration 230 mg m−3) under visible-light irradiation (380–800 nm); the degradation rate was 100% within 180 min. Under the same reaction conditions, the degradation rates of unmodified TiO2 (hydrothermally synthesized TiO2) and commercial material Degussa P25 were 19% and 23.6%, respectively. This is because the Ti–O–N and Ti–O–C bonds in TMP-modified TiO2 reduce the band gap of TMP-TiO2. The amide bonds in the TMP decrease the TiO2 nanoparticle size and thus increased the specific surface area. The conjugated structures in the TMP provide abundant active sites for trapping photogenerated electrons and promote the separation and transfer of photogenerated electrons and holes.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3