New Intensification Strategies for the Direct Conversion of Real Biomass into Platform and Fine Chemicals: What Are the Main Improvable Key Aspects?

Author:

Antonetti ClaudiaORCID,Licursi DomenicoORCID,Raspolli Galletti Anna MariaORCID

Abstract

Nowadays, the solvothermal conversion of biomass has reached a good level of development, and now it is necessary to improve the process intensification, in order to boost its further growth on the industrial scale. Otherwise, most of these processes would be limited to the pilot scale or, even worse, to exclusive academic investigations, intended as isolated applications for the development of new catalysts. For this purpose, it is necessary to improve the work-up technologies, combining, where possible, reaction/purification unit operations, and enhancing the feedstock/liquid ratio, thus improving the final concentration of the target product and reducing the work-up costs. Furthermore, it becomes decisive to reconsider more critically the choice of biomass, solvent(s), and catalysts, pursuing the biomass fractionation in its components and promoting one-pot cascade conversion routes. Screening and process optimization activities on a laboratory scale must be fast and functional to the flexibility of these processes, exploiting efficient reaction systems such as microwaves and/or ultrasounds, and using multivariate analysis for an integrated evaluation of the data. These upstream choices, which are mainly of the chemist’s responsibility, are fundamental and deeply interconnected with downstream engineering, economic, and legislative aspects, which are decisive for the real development of the process. In this Editorial, all these key issues will be discussed, in particular those aimed at the intensification of solvothermal processes, taking into account some real case studies, already developed on the industrial scale.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3