Fast Microwave Synthesis of Gold-Doped TiO2 Assisted by Modified Cyclodextrins for Photocatalytic Degradation of Dye and Hydrogen Production

Author:

Machut CécileORCID,Kania NicolasORCID,Léger BastienORCID,Wyrwalski Frédéric,Noël SébastienORCID,Addad Ahmed,Monflier EricORCID,Ponchel Anne

Abstract

A convenient and fast microwave synthesis of gold-doped titanium dioxide materials was developed with the aid of commercially available and common cyclodextrin derivatives, acting both as reducing and stabilizing agents. Anatase titanium oxide was synthesized from titanium chloride by microwave heating without calcination. Then, the resulting titanium oxide was decorated by gold nanoparticles thanks to a microwave-assisted reduction of HAuCl4 by cyclodextrin in alkaline conditions. The materials were fully characterized by UV-Vis spectroscopy, X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and N2 adsorption-desorption measurements, while the metal content was determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The efficiency of the TiO2@Au materials was evaluated with respect to two different photocatalytic reactions, such as dye degradation and hydrogen evolution from water.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3