Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy

Author:

Monteiro Rodolpho R. C.ORCID,dos Santos José C. S.ORCID,Alcántara Andrés R.ORCID,Fernandez-Lafuente RobertoORCID

Abstract

The immobilization of enzymes using protein coated micro-crystals (PCMCs) was reported for the first time in 2001 by Kreiner and coworkers. The strategy is very simple. First, an enzyme solution must be prepared in a concentrated solution of one compound (salt, sugar, amino acid) very soluble in water and poorly soluble in a water-soluble solvent. Then, the enzyme solution is added dropwise to the water soluble solvent under rapid stirring. The components accompanying the enzyme are called the crystal growing agents, the solvent being the dehydrating agent. This strategy permits the rapid dehydration of the enzyme solution drops, resulting in a crystallization of the crystal formation agent, and the enzyme is deposited on this crystal surface. The reaction medium where these biocatalysts can be used is marked by the solubility of the PCMC components, and usually these biocatalysts may be employed in water soluble organic solvents with a maximum of 20% water. The evolution of these PCMC was to chemically crosslink them and further improve their stabilities. Moreover, the PCMC strategy has been used to coimmobilize enzymes or enzymes and cofactors. The immobilization may permit the use of buffers as crystal growth agents, enabling control of the reaction pH in the enzyme environments. Usually, the PCMC biocatalysts are very stable and more active than other biocatalysts of the same enzyme. However, this simple (at least at laboratory scale) immobilization strategy is underutilized even when the publications using it systematically presented a better performance of them in organic solvents than that of many other immobilized biocatalysts. In fact, many possibilities and studies using this technique are lacking. This review tried to outline the possibilities of this useful immobilization strategy.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3