Low-Cost Synthesis of Cu-Modified Immobilized Nanoporous TiO2 for Photocatalytic Degradation of 1H-Benzotriazole

Author:

Čižmar Tihana,Panžić Ivana,Salamon KrešimirORCID,Grčić IvanaORCID,Radetić Lucija,Marčec Jan,Gajović AndrejaORCID

Abstract

Cu-modified immobilized nanoporous TiO2 photocatalysts, prepared by electrochemical anodization of titanium foils, were obtained via four different synthesis methods: hydrothermal synthesis, anodization with Cu source, electrodeposition, and spin-coating, using two different copper sources, Cu(NO3)2 and Cu(acac)2. The objective of this research was to investigate how copper modifications can improve the photocatalytic activity of immobilized nanoporous TiO2 under the UV/solar light irradiation. The best photocatalytic performances were obtained for Cu-modifications using spin-coating. Therefore, the effect of irradiated catalyst surface areas on the adsorption of model pollutants, methylene blue (MB) and 1H-benzotriazole (BT), was examined for samples with Cu-modification by the spin-coating technique. The mechanisms responsible for increased degradation of MB and BT at high Cu concentrations (0.25 M and 0.5 M) and decreased degradation at low Cu loadings (0.0625 M and 0.125 M) were explained. 1H-benzotriazole was used to study the photocatalytic activity of the given samples because it is highly toxic and present in most water systems. The characterization of the synthesized Cu-modified photocatalysts in terms of phase composition, crystal structure, and morphology were investigated using X-ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy, and Energy Dispersive X-ray spectroscopy.

Funder

Hrvatska Zaklada za Znanost

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3