Author:
Zhang Guoqiang,Zhang Zhiyun,Wang Yunqiang,Liu Yanqiu,Kang Qiping
Abstract
Carbon dioxide reforming of methane (CRM) represents a promising method that can effectively convert CH4 and CO2 into valuable energy resources. Herein, ultrathin NixMg1−xO nanoplate catalysts were synthesized using a scalable and facile process involving a one-pot, co-precipitation method in the absence of surfactants. This approach resulted in the synthesis of planar NixMg1−xO catalysts that were much thinner (˂8 nm) with larger specific surface area (>120 m2/g) in comparison to NixMg1−xO catalysts prepared by conventional methods. The ultrathin NixMg1−xO nanoplate catalysts exhibited high thermal stability, catalytic activity, and durability for CRM. Especially, these novel catalysts exhibited excellent anti-coking behavior with a low carbon deposition of 2.1 wt.% after 36 h of continuous reaction compared with the conventional catalysts, under the reaction conditions of the present study. The improved performance of the thin NixMg1−xO nanoplate catalysts was attributed to the high specific surface area and the interaction between metallic nickel nanocatalysts and the solid solution substrates to stabilize the Ni nanoparticles.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献