Water Depollution and Photo-Detoxification by Means of TiO2: Fluoroquinolone Antibiotics as a Case Study

Author:

Pretali Luca,Maraschi Federica,Cantalupi Alice,Albini Angelo,Sturini MichelaORCID

Abstract

Photocatalysis by semiconductors is considered one of the most promising advanced oxidation processes (AOPs) and TiO2 is the most well-studied material for the removal of contaminants from the aquatic system. Over the last 20 years, pharmaceuticals have been the most investigated pollutants. They re-enter the environment almost unmodified or slightly metabolized, especially in the aquatic environment, since the traditional urban wastewater treatment plants (WWTPs) are not able to abate them. Due to their continuous input, persistence in the environment, and unpleasant effects even at low concentrations, drugs are considered contaminants of emerging concern (ECs). Among these, we chose fluoroquinolone (FQ) antibiotics as an environmental probe for assessing the role of TiO2 photocatalysis in the degradation of recalcitrant pollutants under environmental conditions and detoxification of surface waters and wastewaters. Due to their widespread diffusion, their presence in the list of the most persistent pollutants, and because they have been deeply investigated and their multiform photochemistry is well-known, they are able to supply rich information, both chemical and toxicological, on all key steps of the oxidative degradation process. The present review article explores, in a non-exhaustive way, the relationship among pollution, toxicity and remediation through titanium dioxide photocatalysis, with particular attention to the toxicological aspect. By using FQs as the probe, in depth indications about the different phases of the process were obtained, and the results reported in this paper may be useful in the improvement of large-scale applications of this technology, and—through generally valid methods—they could be deployed to other pharmaceuticals and emerging recalcitrant contaminants.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3