Total Oxidation of Toluene and Propane over Co3O4 Catalysts: Influence of Precipitating pH and Washing

Author:

Driouch ImaneORCID,Zhang Weidong,Heitz Michèle,Valverde Jose LuisORCID,Giroir-Fendler Anne

Abstract

A series of Co3O4 catalysts were synthesized by an ammonia precipitation method at various precipitating pH values (8.0, 8.5, 9.0, 9.5, and 10.0) and with different numbers of washings. Their performance in the total oxidation of two selected hydrocarbons, toluene and propane, was evaluated at a reactant/oxygen molar ratio of 1/210 and a Weight Hourly Space Velocity (WHSV) of 40,000 mL g−1 h−1. The physicochemical properties of the catalysts were characterized by thermogravimetric and differential thermal analysis (TG/DTA), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and N2 absorption–desorption. The results show that the catalysts are in the cubic spinel phase (Fd-3m (227), a = 8.0840 Å) with average crystalline sizes of 29−40 nm and specific surface areas of 12–20 m2 g−1. All catalysts allowed 100% conversion of both toluene and propane at temperatures below 350 °C. The precipitating pH and the number of washings were observed to significantly affect the catalytic performance. The optimal synthesis condition was established to be pH 8.5 with two washings. The best catalyst gave 100% conversion of toluene and propane at 306 °C and 268 °C, respectively.

Funder

Conseil National de la Recherche Scientifique

China Scholarship Council

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3