Annealing Temperature-Dependent Effects of Fe-Loading on the Visible Light-Driven Photocatalytic Activity of Rutile TiO2 Nanoparticles and Their Applicability for Air Purification

Author:

Kim Soong Yeon,Saqlain Shahid,Cha Byeong Jun,Zhao Shufang,Seo Hyun Ook,Kim Young DokORCID

Abstract

Commercial rutile TiO2 particles (200–300 nm) were modified by the temperature-regulated chemical vapor deposition (tr-CVD) of Fe-oxide and subsequent annealing at various temperatures (300~750 °C). As a result of the modification, the photocatalytic activity of the TiO2 regarding acetaldehyde removal under visible light was enhanced, and the enhancement effects were dependent on the annealing temperature. Specifically, the enhancement effects of the modification were most pronounced when Fe-TiO2 was annealed at 375 °C, whereas the effects were significantly reduced by annealing at higher temperatures (525 and 750 °C). The analytical results with various techniques, including two surface-sensitive methods (XPS (X-ray photoelectron spectroscopy) and TOF-SIMS (time of fight-secondary ion mass spectrometry)), revealed that the stronger metal support interaction between TiO2 and the loaded Fe-oxide at high temperature (>375 °C) resulted in the decreased charge separation efficiency and photocatalytic activity of the Fe-TiO2 under light irradiation. The production scale for the Fe-TiO2 photocatalysts can be easily increased (from 200 g to 8 kg per the unit process) by upsizing the reactor volume. The mass-produced samples exhibited similar activity to the samples produced at small scale, and they were photocatalytically active after being spread on a cement block (stainless steel plate) using a surface hardening agent (paint), showing the high applicability in real applications.

Funder

National Research Foundation of Korea

Korea Basic Science Institute

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3