Ru-Catalyzed Repetitive Batch Borylative Coupling of Olefins in Ionic Liquids or Ionic Liquids/scCO2 Systems

Author:

Szyling JakubORCID,Sokolnicki Tomasz,Franczyk Adrian,Walkowiak JędrzejORCID

Abstract

The first, recyclable protocol for the selective synthesis of (E)-alkenyl boronates via borylative coupling of olefins with vinylboronic acid pinacol ester in monophasic (cat@IL) or biphasic (cat@IL/scCO2) systems is reported in this article. The efficient immobilization of [Ru(CO)Cl(H)(PCy3)2] (1 mol%) in [EMPyr][NTf2] and [BMIm][OTf] with the subsequent extraction of products with n-heptane permitted multiple reuses of the catalyst without a significant decrease in its activity and stability (up to 7 runs). Utilization of scCO2 as an extractant enabled a significant reduction in the amount of catalyst leaching during the separation process, compared to extraction with n-heptane. Such efficient catalyst immobilization allowed an intensification of the processes in terms of its productivity, which was indicated by high cumulative TON values (up to 956) in contrast to the traditional approach of applying volatile organic solvents (TON = ~50–100). The reaction was versatile to styrenes with electron-donating and withdrawing substituents and vinylcyclohexane, generating unsaturated organoboron compounds, of which synthetic utility was shown by the direct transformation of extracted products in iododeborylation and Suzuki coupling processes. All synthesized compounds were characterized using 1H, 13C NMR and GC-MS, while leaching of the catalyst was detected with ICP-MS.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference46 articles.

1. Chemical industry and homogeneous catalysis;Bhaduri,2014

2. Chapter 8—Catalysis for fine and specialty chemicals;Joshi,2016

3. Catalyst Separation, Recovery and Recycling: Chemistry and Process Design;Cole-Hamilton,2006

4. Methods and Tools of Sustainable Industrial Chemistry: Catalysis

5. Recent Advances Utilized in the Recycling of Homogeneous Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3