Author:
Wang Hongyang,Zhang Tengda,Zhou Yufa,Zhang Xiuling,Di Lanbo
Abstract
Atmospheric pressure cold plasma is an environmentally friendly and novel method to synthesize supported metal catalysts, which usually uses active hydrogen species to reduce metal ions. Ethanol is a hydrogen-rich renewable liquid hydrogen source, and it is more convenient to store and transport than H2. In this study, a “storage-discharge” ethanol cold plasma was used to prepare Pd/Al2O3-EP catalysts, and the obtained catalysts are used for CO oxidation. The complete oxidation of CO temperature (T100) over Pd/Al2O3-EP was 145 °C, which was comparable to the performance of Pd/Al2O3-HP that was synthesized by atmospheric pressure hydrogen cold plasma. Pd/Al2O3-EP-C obtained by calcining Pd/Al2O3-EP at 450 °C for 2 h in air atmosphere in order to remove residual carbon species showed much higher CO oxidation activity, and T100 was 130 °C. The Pd/Al2O3 catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron diffraction (XPS), Brunauer–Emmett–Teller (BET), and transmission electron microscopy (TEM), and the structure-performance relationship was analyzed. The results indicate that the “storage-discharge” ethanol cold plasma can reduce the Pd precursor ions into metallic Pd state, and the dissociation of ethanol forms lots of highly active chemisorbed oxygen species, which can enhance the performance of Pd/Al2O3-EP for CO oxidation. In contrast, Pd/Al2O3-EP-C shows much higher CO oxidation activity, which is mainly attributed to the removal of the residual carbon species, and the exposure of more Pd active sites and chemisorbed oxygen species. The “storage-discharge” ethanol cold plasma is a safe and efficient novel method for synthesizing supported Pd catalysts, and it has important potential for the preparation and application of supported metal catalysts.
Funder
National Natural Science Foundation of China
Liaoning Innovative Talents in University
Natural Science Foundation of Liaoning Province
Subject
Physical and Theoretical Chemistry,Catalysis