Ethanol Electrooxidation on Phase- and Morphology-Controlled Ni(OH)2 Microspheres

Author:

Lidasan Jun Jeffri B.ORCID,del Rosario Julie Anne D.,Ocon Joey D.

Abstract

The electrooxidation kinetics of ethanol is key to making direct ethanol fuel cells and electrocatalytically reforming ethanol viable technologies for a more sustainable energy conversion. In this study, the electrooxidation of ethanol was investigated on nickel hydroxide (Ni(OH)2) catalysts synthesized using a facile solvothermal method. Variations in the temperature, heating time, and the addition of oleylamine in the precursor enabled the phase and morphology control of the catalysts. X-ray diffraction and scanning electron microscopy show that the addition of oleylamine in the precursor resulted in microspheres with a high surface area, but favored the formation of β-phase Ni(OH)2. Elevated temperatures or prolonged periods of heating in a controlled environment, on the other hand, can lead to the formation of the ethanol oxidation reaction-active α-phase. Among the synthesized catalysts, the α-Ni(OH)2 microspheres with nanoflakes achieved the highest activity for ethanol oxidation with a current density of 24.4 mA cm−2 at 1.55 V (vs. RHE, reversible hydrogen electrode) in cyclic voltammetry tests and stable at 40 mA cm−2 in chronoamperometric tests at the same potential, comparatively higher than other Ni-based catalysts found in the literature. While the overpotential is beyond the useful range for direct ethanol fuel cells, it may be useful for understanding the mechanism of ethanol oxidation reactions on transition metal hydroxides at their oxidizing potential for ethanol electroreforming.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3