Efficient Oxidation of Methyl Glycolate to Methyl Glyoxylate Using a Fusion Enzyme of Glycolate Oxidase, Catalase and Hemoglobin

Author:

Ying XiangxianORCID,Wang Can,Shao Shuai,Wang Qizhou,Zhou Xueting,Bai Yanbing,Chen Liang,Lu Chenze,Zhao ManORCID,Wang Zhao

Abstract

Possessing aldehyde and carboxyl groups, glyoxylic acid and its ester derivatives serve as platform chemicals for the synthesis of vanillin, (R)-pantolactone, antibiotics or agrochemicals. Methyl glycolate is one of the by-products in the coal-to-glycol industry, and we attempted its value-added use through enzymatic oxidation of methyl glycolate to methyl glyoxylate. The cascade catalysis of glycolate oxidase from Spinacia oleracea (SoGOX), catalase from Helicobacter pylori (HpCAT) and hemoglobin from Vitreoscilla stercoraria (VsHGB) was firstly constructed, despite poor catalytic performance. To enable efficient oxidation of methyl glycolate, eight fusion enzymes of SoGOX, HpCAT and VsHGB were constructed by varying the orientation and the linker length. The fusion enzyme VsHGB-GSG-SoGOX-GGGGS-HpCAT was proved to be best, which reaction yield was 2.9 times higher than that of separated enzymes. The enzyme SoGOX was further subjected to directed evolution and site-saturation mutagenesis. The reaction yield of the resulting variant M267T/S362G was 1.9 times higher than that of the wild type. Then, the double substitution M267T/S362G was integrated with fusion expression to give the fusion enzyme VsHGB-GSG-SoGOXmut-GGGGS-HpCAT, which crude enzyme was used as biocatalyst. The use of crude enzyme virtually eliminated side reactions and simplified the preparation of biocatalysts. Under the optimized conditions, the crude enzyme VsHGB-GSG-SoGOXmut-GGGGS-HpCAT catalyzed the oxidation of 200 mM methyl glycolate for 6 h, giving a yield of 95.3%. The development of efficient fusion enzyme and the use of its crude enzyme paved the way for preparative scale application on enzymatic oxidation of methyl glycolate to methyl glyoxylate.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3