Molybdenum and Nickel Nanoparticles Synthesis by Laser Ablation towards the Preparation of a Hydrodesulfurization Catalyst

Author:

Londoño-Calderón VivianaORCID,Ospina RogelioORCID,Rodriguez-Pereira Jhonatan,Rincón-Ortiz Sergio A.,Restrepo-Parra Elisabeth

Abstract

A clean straightforward laser ablation method in deionized (DI) water is reported for the synthesis of Molybdenum (Mo) and Nickel (Ni) nanoparticles (NPs). The structural, morphological, and optical properties of the as-synthesized nanoparticles were investigated. Particle size was estimated to be less than 10 nm, the UV–vis spectra of the samples show the formation of H2MoO4 and NiO. The XRD results for the Ni sample show the presence of two phases, cubic nickel oxide, and an fcc metallic nickel phase, indicating the possible formation of Ni/NiO compound. The nanoparticles synthesized were used as precursors in the production of a NiMo/γ-Al2O3 catalyst. The textural and structural properties, chemical composition, and catalytic performance in a hydrodesulfurization (HDS) reaction are reported. The textural and structural properties results show the lack of pore-blocking due to the small sizes and the distribution of the metallic nanoparticles on the support. Chemical composition measured by XPS shows a ratio Ni/Mo of 1.34. Therefore, possibly Ni was deposited on Mo covering part of its active area, occupying active sites of Mo, removing its effective surface and resulting in a relatively low conversion of DBT (17%). A lower Ni/Mo ratio is required to improve the model system, which could be achieved by changing parameters at the production of the nanoparticles. The model system can also be further tuned by changing the size of the nanoparticles.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3